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Results of investigations of the thermophysical  proper t ies  of layers  of d isperse  mater ia l  in 
various gaseous media are  reported.  The role played by individual components of hea t - con-  
duction in a d isperse  layer  is considered.  

A knowledge of the thermal  proper t ies  of d isperse  mater ia ls  is required for  the solution of problems 
in assor ted  fields of science and technology. 

As was noted in [1], the p rocesses  of molecular  t ransfer  of heat through granular  sys tems has r e -  
ceived fairly detailed theoret ical  and experimental  study, both at normal  and reduced p ressure .  As yet, 
only rough es t imates  can be made for contact heat exchange. Fa r  less study has been given to the p ro -  
cesses  of radiant heat t ransfer  in d isperse  mater ia l .  

On the basis of experimental  data [2-4], we shall consider  the role of the individual components en t e r -  
ing into the effective thermal conductivity of a layer  of d isperse  mater ia l  at high tempera tures .  

The process  of heat t ransfer  in layers  of d isperse  mater ia l  includes severa l  different hea t -p ropaga-  
tion mechanisms ,  acting simultaneously but separate .  They can be grouped as follows: heat conduction by 
solid par t ic les ,  heat conduction by a gas, convection, and thermal radiation. It is difficult to make a quan- 
titative evaluation of each component, so that the theoretical  determination of the effective thermal  conduc-  
tivity is very difficult. 

The effective thermal  conductivity has been obtained in experimental  studies of the thermal propert ies  
of spherical  iron and slag pellets (in 0.5-1.0, 2.0-3.0, and 3.0-4.0 mm fractions) at 1 �9 10 -4 mm Hg in the 
373-1273~ range [2]; compar ison of these data with the effective thermal-conduct ivi ty  values obtained for 
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the same mater ia ls  at normal  a tmospher ic  p r e s su re  in air,  
carbon dioxide, and helium [3, 4] makes it possible to follow 
the change in s t ruc ture  of the totai heat flux through the m a t e -  
rial over a wide tempera ture  range. 

Figure  1 shows the effective thermal  conductivity of the 
mater ia l  as a function of the thermal conductivity of the gas 

Fig. 1. Effective thermal  conductivity of 
d isperse  mater ia l  as a function of the the r -  
mal conductivity of the gas fi l ler:  1, 2) 
2 .0 -3 .0mm iron spheres  at 873 and 373~ 
respect ively;  3-5) 2.0-3.0 mm slag spheres  
at 873,673, and 373~ respect ively .  

fil ler.  The initial points on the curves  represent  ~ef in a 
high vacuum, when the molecular  conduction of the gas is 
slight, and can be neglected,  i.e., 7,g ~ 0. It is c lear  f rom 
Fig. 1 that the thermal  conductivity of the mater ia l  depends 
s t rongly on that of the gas.  For  mater ia l  in gaseous media 
with low conductivity (air, carbon dioxide, etc.), heat t ransfer  
by the part icle  contact conductivity and by radiation is com-  
mensura te  with the conductive t ransfer  of heat by the gas 
(convection can be neglected for the mater ia l s  investigated 
[5]). 

Measurement  of the effective conductivity of slag and 
iron spheres  has shown that the thermal  conductivity of the 
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Fig. 2. Effective thermal  conductivity of d isperse  layer  
as a function of par t ic le  d iameter  (ram) in air:  1, 3) 
iron shot at 873 and 573~ 2, 4) slag spheres at 1073 
and 373~ 

layer  depends little on that of the mater ia l  from which the par t ic les  are made. Thus at 373~ the effective 
thermal conductivity of a layer  of iron spheres  differs from that of slag spheres  by 30% in vacuum and by 
50% in air at a tmospher ic  p re s su re ,  while at the same tempera ture ,  iron and slag differ in thermal conduc- 
tivity by more  than a factor  of 40. As the conductivity of the gas f i l ler  increases ,  this difference between 
the conductivities of the layers  does also. Thus, at 373~ the effective thermal conductivities of the same 
layers  differ by more  than a factor  of 3 at a tmospher ic  p r e s s u r e  in helium. 

It is the considerable themnal contact res i s tances  between the par t ic les  that account for the weak in- 
fluence of the conductivity of the actual mater ia l  on the effective layer  conductivity. When heat propagates 
by contact conduction of par t ic les ,  it does so along a crooked path, owing to the random positioning of the 
thermal -contac t  sur faces .  Contact heat exchange depends on the physical and mechanical  proper t ies  of 
the mater ia l ,  and on the specific load. 

In our experiments  [2], we took X c to be 0.06 W/m .deg for a layer  of iron spheres  and 0.015 W/m 
�9 deg for a layer  of slag spheres .  

A value of 0.07 W/m �9 deg is given in [6] for the ;t c of iron shot. As we see,  these values do not d is -  
agree very  much. 

Figure  2 shows the effective layer  thermal  conductivity as a function of part icle  d iameter .  As we 
see,  at low tempera tures ,  2,el is near ly  independent of par t ic le  d iameter .  This is so since at low t empera -  
tures (up to 373~ the basic  heat flux resul ts  from molecular  motion of the gas,  with radiation and convec-  
tion playing no substantial  role.  

As the tempera ture  increases ,  radiative conduction begins to play an important part  in heat t ransfer ,  
so that the layer  conductivity is great ly  affected by the par t ic le  d iameter ,  whose value determines the 
"screen number ."  
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Fig. 3. Relationship between various types of heat t r ans fe r  in a layer  of disperse  mater ia l  in carbon 
dioxide (a), helium (b), and air (c): 1, 3) slag spheres ,  2.0-3.0 and 0.5-1.0 mm in d iameter ,  r e s p e c -  
tively; 2, 4) iron spheres ,  2.0-3.0 and 0.5-1.0 mm in diameter ,  respect ively .  

949 



~ef 

/i [ I ,,~" 

0,7 -v ~-~ ~I 
.a 

~- I & ~ ' ~  

/ 

] / 

f 

- - i  a--5 
- - 2  o - - 6  

�9 - - 3  x--7 

�9 - - 4  + - - 8  

~"ef 

3 

Z 

! 

0'/373 o73 773 973 7/73 7" 

Fig. 4. Effective thermal conductivity of d isperse  
mater ia l  as a function of tempera ture :  1) MgO 
(m = 0.42, d = 0.205 ram), helium [10]; 2) iron 
filings (m = 0.5, d = 0.177ram), neon [10]; 3) iron 
spheres  (m = 0.4, d = 11 mm), air  [11]; 4) MgO 
(m = 0.42, d = 0.268 ram), air  [12]; 5) MgO (m 
= 0.525, d = 0.45 mm),  a ir  [13]; 6) iron filings 
(m =0.5 ,  d = 0 . 1 7 7 m m ) ,  argon [10]; 7) ZrO 
(m = 0.42, d = 0.282mm), air  [12]; 8) quar tzsand  
(m -- 0.5, d = 0.12 ram), air  [14]; dashed curves ,  
computed from (1). 

Measurement  of the effective thermal conduc-  
tivity of d isperse  layers  at 1 �9 10 -4 mm Hg and at 
a tmospher ic  p r e s su re  in various gases made it pos-  
sible to evaluate the role of radiation in the overall  
heat flux for d isperse  mater ia ls  (Fig. 3). 

The relative importance of radiation in the 
overall  heat flow through a layer  of disperse  ma te -  
rial increases  rapidly with the temperature ,  since 
radiative heat t ransfer  is proportional to the cube of 
the mean absolute temperature  of the material .  

As we see f rom Fig. 3, at low tempera tures ,  
radiation has little influence on the overall  process  
of heat exchange, except for mater ia ls  with part icles  
of less than 1 mm in diameter .  For  2.0-3.0 mm 
par t ic les ,  the radiative component contributes r e l a -  
tively little to the heat conduction of the d isperse  
layer  only for helium; in carbon dioxide and air it 
becomes perceptible even at 473-573~ while above 
1073~ radiative t ransfer  is more  important than 
conductive t ransfer  by the gas. 

The measurements  of effective thermal con- 
ductivity for s lag-  and i ron-sphere  layers  in various 
gases can be descr ibed with an accuracy  of • 
by the following formula [15]: 

Eg[l+3.91;~,l ( l - - m ) [  In Xm] + 3.46(sTad[3tnep-} - (l--m)em] (1) 
~ef = ;~gJ 1+ ( l - -m) (1 - -  era) 

It is interest ing to compare  the published experimental  data on the thermal  conductivity of such layers  
in various gases over a wide tempera ture  range with data calculated from (1). 

Figure 4 i l lustrates the results  of such a comparison.  For  the purposes of determining 7,ef , the 
values of ap and em were taken from [7-9]. There is a 5-25% difference between the calculated and ex-  
perimental  values of 7,el for a wide class of granular  mate r ia l s .  

The good agreement  between the calculated and experimental  values indicates that our proposed f o r -  
mula (1) can be recommended for determining the effective thermal  conductivity of monodisperse  mater ia ls  
over a wide range of t empera tures .  

In studying heat conduction in d isperse  mater ia l  at elevated tempera tures ,  we can effectively replace 
the f i rs t  te rm in (1) as was shown in [3, 4] by analytic relationships [16, 17, etc.] for determining the com-  
ponent of the effective thermal  conductivity of a d isperse  layer  that is produced by the conduetivities of the 
gas and the mater ia l  of the par t ic les ;  this will substantially simplify the problem of devising a generalizing 
relationship to descr ibe  the effective thermal conductivity of such layers  over a wide tempera ture  range. 
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is the par t ic le  d iameter ,  m; 
is the porosi ty;  
is the absolute tempera ture ,  ~ 
are  the emissivi t ies  of the pores and the par t ic le  mater ia l ;  
are  the thermal  eonductivities of the part icle  mater ia l  and the gas,  W/m �9 deg; 
is the coefficient of effective thermal conductivity for the d isperse  layer ,  W/m "deg; 
is the coefficient of contact conductivity for the disperse  layer ,  W/m -deg; 
is the S te fan-Bol tzmann  constant,  W/m 2" ?K4; 
is the coefficient of effective thermal  conductivity of the layer  at 1 �9 10 -4 mm Hg, W/m �9 deg. 
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